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"ABSTRACT. A short summary is presented of works performed
recently at the Institute of Physics of the University of
Moscow and several of the laboratories on the problem of
nonlinear oscillators. The discussion is limited to sys-
tems with one degree of freedom, in the most essential as-
pects. ?

SEERCRTE ot
Introduction

Since Dr. Balth. van der Pol had invited us, in his capacity as president
of the Physics Section of the International Congress of the ISRU, to provide
;:a summary of recent research on nonlinear oscillations Eerformed at the

Physics Institute of Moscow University,! at the'CehtréT‘LeﬁiﬁgfadwRéaiﬁm o

Laboratory, at the Electrophysics Institute of Leningrad and at Gorki Univers-
ity, we do this with great pleasure since a large part of our works in this
important field is closely related to the basic research experiments of

Mr. van der Pol. We shall only be able to discuss a restricted part of this
subject. We shall, however, be able to report some general concepts which
guided us during our research and some of the results obtained.

Whereas up to rather recently the preponderant role in the theory of
oscillations belonged to so-called linear systems (''small" oscillations of
mechanical systems having a finite number of degrees of freedom, electric
circuits, conventional problems of boundary conditions), at the present time,
in the varied fields of pure and applied science (mechanics, acoustics,
biology and, above all, since the coming of the electronic tube, radioengin-
eering) interest is being applied more and more on nonlinear systems.

Systems presently being used by radioengineering for transmitting and
receiving are essentially nonlinear and this is by no means a fortuitous

T Report made to the Radiophysics Sectﬁon of the General Assembly of the
International Scientific Radio Union (ISRU), London, 12-18 September 1934.
* Numbers in the Margin indicate pagination in the foreign text.




circumstance. It is enough merely to examine -- let us take the most 51mp1e
example -- a triode oscillator to see that an autonomous linear system, i.e. a
device in which the current and” voltage are governed by differential linear
equat10n51n which time does not exp11c1t1y enter!, cannot have the properties
‘which possess and should possess a transmitter. (We shall confine oureelves
to autonomous systems in order to exclude thosé whose oscillations arei
transmltted from the outside. For, naturally, the system receives oscilla-
tions from an outside source, the question immediately arises as to how
oscillations from this source are produced. In order to discuss the problem
of the emission of the oscillations, systems functioning without external
electromotive forces should be observed.) Indeed, the basic property of
linear systems is that amplitude is not intrinsic to the system, but is
completely a function of the initial conditions. Now, the distinguishing
features of modern oscillating devices is that, on the contrary and independ-
ently of the initial state, there is established an oscillatory mode of
operation whose amplitude and period are completely defined. This is why
modern radioengineering has had to call upon physical concepts and a mathemat-
ical apparatus which were able to cope with nonlinear systems. The great
diversity of phenomena which are:-revesdled inunonlinear systems makes them
extremely interesting from the purely physical side. It is also this diversity
as well as their flexibility which has enabled the determination of the broad
applications that these systems have received in the course of the last few
years. ;

Since the study of differential nonlinear equatlons is much more
difficult and complicated than that of linear equations, the tendency has
naturally been from the beginning to '"linearize" the problems, i.e. to treat
the essentially nonlinear problems from a linear viewpoint. It cannot be
denied that in order to clear up some aspects of the known phenomena, such a
method can sometimes have its utility. However, since it is still incomplete,
artificial and requires complementary ad hoc hypotheses, this method of
linearization often leads to errors. One of these errors which is still
encountered quite often is referred to below?.

After the nonlinear systems had completely conquered the field, practice
itself, revealing phenomena completely foreign to the linear systems, inspired
a search for a mathematical apparatus which could cope with these phenomena.
Very soon, publications appeared which purposely began from a nonlinear view-
point. These are, above all, the remarkable works of van der Pol to which we
will have occasion to refer several times. As has been stated, the results
that they contain have a fundamental importance for the entire field in which
‘we are involved. However, and this is natural, the first works had as their
goal the production of tangible results, rather than to develop a general and
strict theory. Thus, for example, existence of periodic solutions was

T"We term as autonomous any system whose differential equations do not contain
an explicit reference to time.
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accepted as an assumption. Series were often used whose convergence was not
unquestioned. Nevertheless, and let us emphasize this, the results obtained
were good. SR “““ék;“f‘ ;
After u51ng these methods and ow1ng, in the first place, to the works of

‘van der Pol, a great quantity of Valuable résults was produced and it

natural to pass on to more general points of view and to look for a mathemat—
ical apparatus which could cope with nonlinear problems. It is in this
direction that a part of our works has been directed. It turned out that the
mathematical apparatus which could cope with nonlinear oscillation problems
‘had been in existance for a long time. On the one hand, it was contained in:
the famous works of Henri Poincare [1], :[2], and, on the other hand, in the
remarkable investigations of Liapounov [3]

The relationship existing between the works of Poincare, carried forward
by Birkhoff [4], as well as those of Liapounov, and our physical problems was
pointed out by one of us [5]. Three things should be pointed out here. First
of all, the qualitative theory of differential equations, developed by
P01ncare has turned out to be very. effectlve for the qualltatlve discussion
of phy51ca1 phenomena taking place in systems presently used in radioengin-
eering. Nevertheless, neither the physicist, nor with greater reason the
engineer, can be happy with a qualitative analysis. Another cycle of the
works of Poincare supplied an apparatus which allowed ‘the treatment of our
problems on a quantitative basis. Finally, the jworks of Liapounov allow
applying questions of stability to a mathematical discussion.

The first part of this report summarizes these mathematical theories and
shows how we apply them to our problems. We shall almost disregard questions
of stability. The second part discusses the theoretical and experimental
‘aspects of some concrete questions. Theseparflally involve problems where we
have perfected and supplied with a strict mathematical base those results
previously obtained by other authors. In addition, we shall examine resonance
phenomena of the n-th degree and shall succinctly report certain experiments
and theoretical considerations on the so-called parametric excitation phenom-
ena. ‘

We shall conclude by several observatlons on the role of statistics in
oscillatory phenomena.

1. Geometric Presentation of the Movements of an Oscillatory System. Phase
Plan :

There is no question but that the mathemat1ca1 methods concerned here are
perceptibly more complicated and dlfflcult than those used to study linear
systems. This arises from the very nature of the physical problem which is
far from being a simple one. Also, thexe is no doubt that the characteristic

features of this apparatus will prove able to cope with nonlinear systems on a-

theoretical as well as practical basiis." We believe that a mathematical
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apparatus can only be accused of being cumbersome and overcomplicated when it
leads to a result after a long succession of operations in which, each
operation taken separately, is no phy51cal interpretation. Now, thlS\lS not
‘at all the case in the geometric apparatus connected with the name of P01ncareA
Here, each geometrical component possesses a direct phy51ca1 sense. This is !
why thlS geometrical apparatus, although it is complicated, far from belng an
obstacle, simplifies the description and understanding of the physical .
phenomena involved. This well-founded method which consists in showing the /84
conduct of an oscillating system using a geometric figure has been used in T
science for quite some time. The idea is essentially as follows. In order to ’
‘characterize the state of a system at N degrees of freedom it is necessary to
provide 2N numbers (N coordinates and N velocities). These 2N numbers can be
considered as specifying the position of a point in space with 2N dimensions. !

To each point of this space there corresponds a determined state (a determlned
"'phase') of the system. This is why this space is called "extension in

phase." 1In the case of the systems with a degree of freedom, this space has
“two dimensions. In the most simple cases it is a plane.

Let us take the most simple-examplé of ‘harmonic oscillator. Its equation§
as the form:

&+ wrx=0 s. (1) -

or

(2)

These equations likewise describe an electric circuit which has capacit-
ance and self-induction, but no resistance if X represents, for example, the
condenser load. We shall show the behavior of the oscillator with a plane
related to rectangular x , x voltage axes (voltage-current plane). This will be
the phase plane. To each new state of the system corresponds a new "figur-
ative' point on the phase plane. To a succession of states of the system

there corresponds a movement of the figurative point on the phase plane, or a
phase trajectory.

Planck has familiarized physicists with the phase trajectories of the
harmonic oscillator. They form a family of ellipses each enclosing the other
" and having a common center as origin. The equation x = y indicates that the
figurative point is moving in a clockwise direction. The origin can be
onsidered as an ellipse which has degenerated into a point.



,ance remains little. In the case under cons]_de'ratlon’ it is clear that the

_the_ coordinates (Figure 1). Each one of the spirals represents a damped

The point x = 0, y =0 1s, in the éase of system (2), a "singular point"
. . . d 0
since at this point di =9 the: dlrectlon of the phase trajectories 1s
1ndeterm1nate According to the classification which is acceptable in|
mathematics, a singular point surrounded by a family of ellipses may be termed
the center. It is clear that the’ s1ngu1ar points have, in the case of}our

H
subject, a special interest. For in order for there to be %§-= %3 i.e
singular point, it is enough that g{ =0, 3? = 0. However, if the current and |

H
i

voltage in a simple circuit are simultaneously equal to zero, the system is in |
equilibrium. All the states of equilibrium of the system under study are ;
therefore shown by singular points of d1fferent1a1 equations (2). i

Each ellipse, each closed traJectory, represents a periodic phenomenon
corresponding to certain suitably selected initial conditions. The origin
represents a stable state of equlllbrluﬁ in the sense that any little disturb-

system under study describes, no matter ‘what may be the initial conditions, a
perlodlc movement except in the'case where’iﬁitial conditions correspond to
the origin of the coordinates.

We shall produce in the same way the table of the phase plane of a damped
oscillator which is governed by the equation: |

i i
i

3 20k o 0 . . . ,ﬂA“N,,_m“téjm
or 3 %
Y =25y — w?x

. 4)

xX=y ! j

we shall assume first of all that hZ < m20.

These equations describe, for example, an oscillating circuit which has
resistance, since x is the voltage at the condenser terminals. All the
integral curves are spirals which are wound asymptotically with the origin of

oscillation correspondlng to suitable initial conditions. Like the preceding
example, the origin represents a state of equilibrium and is found to be a
singular point, although of a new type. The singular points which are used as
asymptotic points with a famlly of splrals are called the focus. In our

case, the singular point is stable and is therefore a stable focus.

P



Figure 1 2 Figure 2

Giving consideration to the phase plane of a system governed by the same

equations (3) or (4) but whose damping is substantial enough for h? >u@0 to be ;

true, we shall see substituted for the spirals parabolic curves passing
through the origin (Figure 2). ;:As in, the preceding, the origin represents a
state of equilibrium. It is a 51ngu1ar point of the type called node.
Integral curves reflect the aperiodic movements of the system towards the
state of equilibrium. We therefore have a stable node.

In addition to the center, focus and node,{there also exists an important

i
i

type of singular points for us: this is the saddle, gFlgure 3). The saddle

represents, for example, the upper equilibrium p051t10n of "a penduluii.” THé”“”j/
/86

behavior of integral curves in the vicinity of the saddle shows that the
system always ends by going away. The saddle is therefore always unstable.

In the case of a triode oscillator whose oscillating circuit is inserted
between the filament and the grid, the voltage v at the condenser terminals
confirms the equation:

Ly 4-Rb'+*é“":'?§ f, v 4) |
or
dv 1
di - C
L —apt 1, ).
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The form of the function f(v, i) is provided by the plate characteristic
of the tube (for simplicity's sake, we dlsregard the grid current). The
mathematical discussion of this equatlon with the phase plane gives th¢
following picture . In the case of a soft mode and weak excitation (M small)
the integral curves are spirals.which: unco;l in a closed curve. Some &approach
one another. from the outside, coming from 1nf1n1ty Others approach omne
another from the inside, unwinding beginning from the point of origin
(Figure 4, 16). It is easy to establish the relationship between the essen-
tial lines of the geometrical figure and those of the physical system. The
_origin of the coordinates still represents an equilibrium state; it is an .
unstable focus. Even if the values of voltage and current differ very little
from zero (as will be the case, for example, if the initial perturbation

igs vy is produced by fluctuations), we’shall witness the appearance in the
circuit of oscillations whose amplitude ! will increase gradually. After some
time, the increase will slow down, then stop and we shall see the setting up
of a stationary oscillatory mode of operation which may be depicted on the
phase plane by a closed curve. If the initial conditions correspond to a
point located outside of the closed curve, the.circuit will oscillate with a

decreasing amplitude until a statlonary:mode of operation is set up. The /87

closed curves on which the integral curves are wound or from where they are
unwound are the limiting cycles of Poincare. This mathematical concept has a
very simple physical interpretation: the 11m1t;ng cycles depict periodic
stationary modes of operation. In the same way |as the singular points, the
limiting cycles can be stable (if all the nelghborlng integral curves come
closer) or unstable (if all the neighboring - integral turves-draw apart). It
is clear that only the stable limiting cycles represent the actual perlodlc
movements of a physical system.

w2

Stable leltmg :
| Cycle , |

L
_

Figure 3 g Figure &4 i

If a strong excitation M is glven in the same case of the "soft" mode of
‘operation, there will still exist, since the property was suitable selected,  a’ ;
limiting cycle with which the other 1ntegra1 curves will be wound from inside
and from outside. Nevertheless, theibehavior of the system in the vicinity of
the equilibrium state will be essentially different. The integral curves will

P Cdd



draw apart from the singular point in an aperiodic rather than an oscillatory
manner and the singular point will be an unstable node. The presence of the

cycle shows that there too, no matter what the initial conditions may be,

there will definitely be a well-defined periodic phenomenon of "amplitude."

This periodic phenomenon will be independent of the initial conditions.

However, the transitory phenomenon assumes another characteristic than in the

case of a minor excitation. It should be enough to study the beginning of the
transitory phenomenon of a linear idealization in the case where the initial
perturbation is assumed to.be small. Nevertheless, the absence in the case

of the unstable node of oscillatory phenomena in the linear system allows in

no way a conclusion as to the absence of periodic oscillatory phenomena at a
distance from the state of equilibrium at the very point at which the system :
cannot be considered as linear. ‘

The case of the node enclosed in a limiting stable cycle is the most
striking example of the lack of capability on the part of linear methods to
decide on the existance of periodic phenomena in a self-exciting system. If
this circumstance is disregarded, it is furthermore possible to commit a
serious error as has been done in the case..of several authors...

The singular points and the limiting cycles constitute the geometric
components characterizing, to a certain degree, stationary movements in the
systems. According to Poincare, the knowledge of these components is enough
so as to judge the propertés of all other movements. The coexistance of
these components is likewise controlled by general topological laws. Also, if
the properties of one of these is known, it is often possible to deduce the
existance of the others. If, for example far from the point of origin, all the
integral curves converge towards the origin, with the latter being an unstable
focus or a node, and provided that there are no other singular points, there
exists at least one limiting stable cycle. If there exist several limiting
cycles enclosing one another and between which there are no singular points,
there is an alternation of stable and unstable cycles. From the point of
view of on-the-spot analysis, these statements are almost truisms. Neverthe-
less, the physical phenomena corresponding to these geometric properties are
far from being trivial, and it i§ because it allows, by a relatively simple /88
analysis, the production of an overview of one physical phenomenon, that the T
qualitative theory of Poincare is so valuable.

The following is a very simple example. Although without practical
significance it clearly illustrates what has been said. Let us assume that the
characteristic of the tube has the shape that can be seen on Figure 5. Under
what conditions will the oscillator have stationary (periodic) oscillations?

In order to know the behaviorrof-the system at infinity, it is clearly
possible to assume that the operational point is at the apex of the angle
formed by the two rectilinear parts of the characteristic. Depending on the
slope of the inclined part, two cases can be seen: either the cycle at
infinity will be stable, i.e., all the integral curves will go towards infinity
(if the slope exceeds a certain critical value), or else the cycle at infinity
will be unstable (if the slope is less than this critical value), It can



easily be seen that it is only possible to have one flnlte 11m1ted cycle for
finite values of the slope. If the operatlonal p01nt is located in the
horizontal part of the characteristic, the origin is a stable point of,
equilibrium and, consequently, ow1ng to general topological laws, there can be
no limiting cycle. Therefore, it is not: possible to have oscillations; If
the -operational point is located on the inclined portion of the character—
istic, three cases can occur. If the singular point is stable, there Qre no
oscillations. If the slope increases, the singular point becomes unstable.
If the cycle at infinity is likewise unstable, the oscillations certainly
continue to exist. However, when the slope increases beyond a certain
critical value, the cycle at infinity becomes stable and oscillations become
again impossible.

2. Analytical Methods for Study of NonTinear Sys tems

The general qualitative theory of differential equations discussed by us
in part is still in the development stage. It allows analysis however
incomplete in the case of two and poessibly three autonomous equations (incom-
plete analysis in this last case) provided that the second terms are either
polynomials of not too high a degree (third, fifth), or functions that can be
geometrically characterized with enough 'simplicity. However, the radio-
engineer cannot be happy with the qualitative study of a problem. He requires
a quantitative study which alone can be used as a base for practical
calculation. On the other hand, the radioengineer accepts a quantitative
theory lacking in severity and on an approx1mate ‘basis provided that it takes
‘into account satisfactorily the cases whlch are 1mportant for practical
purposes. ,

From this point, the requirement is clear to prepare approximate methods
of the study of nonlinear systems. These methods should, of course, take into
account what these systems have in the way of specifics. One approximate
quantitative method which can cope with'the analysis of nonlinear systems is

the one involving coefficients with slow variation, or, as we shall term it,
“the van der Pol method. Although this method has actually been used for quite
some time in celestial mechanics, it was van der Pol who was the first to
systematically apply it to problems of radioengineering. He produced a series
of basic results concerning forced synchronization, "resistance," etc. [6],
[71.
But it was only recently that this method was supported on a mathematical
‘basis. In addition, there still remained a certain indecisiveness in the veryr

method of its application. The chief difficulty in this respect was obviated
[8] in a way which we shall explain using equation:

(5)
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in which the second term is a periodic function of
t of period. 2w,'and 1L a '"small parameter'" on which,
- as we shall see, the degree of approx1mat1dn will
, + depend. It is possible to reduce to this ﬂorm the
' equation of the regenerative receiver, etc.
According to van der Pol, it should be stated

4

X==11 c0s I[-}-v sin {, ' (6)

u and v being the functions of time t with ''slow i
Figure 5 variation," i.e. whose derivatives are small with |
respect to u and v, and whose second derivatives
are small w1th respect to the primary derivatives.
Introducing the hypotheses involved in expressions (6) and (5), and dis-
tegarding all the terms of higher degrees as well as the harmonics, we now
‘obtain the approximate equatlons of van, der Pol
._“.Q LR
du ' :
7= (u,v), % = bo(u, v) : !

in which v = pt and 3, (u, v), b (u V) are func%ionshof u and v. ‘

Let us take the problem from another aspect ‘Let us substitute for the
variable x two new variables u and v deflned as follows

X==q cos f] v osin L

being given that for a single variable x we substitute two variables u and v,
enabling us to impose upon them the supplementary condition:

i cosf-+—é sinf--0 é

and replacing equation (5), therefore confirmation of variable x, by the
equations:

U= pf (usinf—ovcost, ucost-}u shlf)cosi }

V== pf (U sint—o cos t, 1 cos - v sin t) sin {. )
: : o §
N
Replacing the second terms by their means, we come agaln to the van der Pol /90
equations or "truncated equations." By producing them in the same way, it is

¥
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possible to clearly state an approximation problem: it is a matter of
establishing when and how much (as a function of the value u) the solutions of
the truncated equations are themselves close to those of the exact equations
(7). This is a purely mathematical question which has been studied by

P. Fatou [9] in a memorandum which only came to our attention after our
investigations concerning the van der Pol method.

Our works, as well as the mathematical results of Fatou apply to our
problems, while reporting under what conditions and in what range the
truncated equations of van der Pol take into account, with a sufficient
approximation, transitory phenomena. In addition, the results of Fatou allow
confirming that when p is sufficiently small, with each position of equili-
rium of the truncated system there corresponds a periodic solution of the
exact system, and that if this position of equilibrium is stable the periodic
solution is likewise so. The question relating to the mathematical base of the
vam der Pol method is therefore clarified. It is possible to hope that this
method will likewise be justified for more complicated cases.

Let us explain in several lines: those advantages of the van der Pol
method. In the case of an autonomous systems with one degree of liberty, the
van der Pol equations can be reduced to one alone which may be easily solved
by quadrature. In the case of nonautonomous systems with one degree of
freedom -- the case which has just been reported above -- the van der Pol
equations are autonomous and, consequently, debatable by the methods of
Poincare [29]. In the case of more complicated systems, for example those
with two degrees of freedom (autonomous or subject to external effects), the
van der Pol equations are systems of autonomous equations of the first
degree -- two equations in the most simple cases -- which can be processed by
the methods of Poincare [10]!. The van der Pol method therefore allows
replacing a system of nonlinear equations by another more simple one. It is
possible to use sucessfully, in a study of the van der Pol equations,
concepts of extension in phase, singular points, limiting cycles and the
theory of bifurcations (section 3). We shall see below that by applying the
Poincare methods to the approximate equations of van der Pol, it is possible
to produce some new results which have a physical interest.

We have seen that the van der Pol method is well bases at least as far as
the most simple cases are concerned. But it only provides a ''zero approx-
imation." For some questions arising in radioengineering, this would be
enough. But there are other questions which require the following approxima-
tions: these chiefly concern questions of frequency adjustment, the latter
only appearing in many problems as a second approximation. A theory which
allows improvement of precision and calculation is therefore.necessary.. Such
T

The van der Pol equations account for three within a self-exciting system with
two weakly connected circuits. This case was taken under discussion by
Mayer at Gorki.
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a theory unfortunately only exists in the case of purely periodic phenomena.
This is the ''small parameter methodﬁ¢;oiwhich we likewise are indebted to
Poincare. This method allowed the latter to scientifically demonstratg the
existance of periodic solutions of very general character for the three-body
problem. In substance, this method consists.of the following. Let usLassume
that when the parameter p = 0, our system accepts certain periodic movements.
A search isi then made for the movement existing when u is not equal to'0 in
the form of an ordinate series according:to the powers of u, in which the zero
approximation is one of the solutions corresponding to u = 0. If, u being
zero, the system concedes a family of periodic solutions, it includes a
discontinuous system of periodic solutionsclose ot those existing when u # 0
and which should be determined. This method is especially convenient when
with zero approximation this system is linear and conservativel.

We have applied this method to a whole series of self-exciting problems
[12], [13], [14], [15].

3. Variation of One Parameter.“*S%ébﬁﬂityG%E“%“Major One

In order to study the important subject of transformations undergone by
the phase plane in the case of variation of one parameter, we should, once
again, consult Poincare. Poincare was led, by his famous theory of the
equilibrium of liquid masses in rotation, tostate and brilliantly solve

3

questions relative to the development of equilibriuf'states of a.conservative

system in the case of the variation of one parameter. The concept created by
Poincare concerning the bifurcate value of the parameter can be generalized
and applied to the problems in which we are invelved. One value of the
parameter » = A_ is called ordinary if there exists a finite quantity e

(e > 0) such as for Ik - AO{ < g¢. The curves integral with the phase plane

have the same qualitative appearance and are bifurcate in the contrary case.

In the general case, the theory of that development undergone by the
qualitative appearance of the phase plan in the case of variation of the
parameter is quite complicated and insufficiently perfected. However, in the
case of the approximately sinusoidal 'os§:illations, the theory is simplified to
the extreme and returns to the theory of Poincare relative to the equilibrium
states of a conservative system. It is enough to replace the coordinates of
the states of equilibrium by the squares of the amplitudes of stationary move-
ments (limiting cycles and singular points) [16]. Without explaining the
Poincare theory, we shall provide an example of its application.

Let us take the two chief types oﬂ excitation, the '"soft'" excitation and ~/92

the "abrupt' excitation. We shall concern ourselves with the emitter of

Figure 6 and shall select as a parameter the coefficient of mutual induction.

T Pontriaguine has provided a general method in the case in which, with zero
approximation, the system is Hamiltonian.

12 .
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Figure 9

Soft excitation. Let A = A, be the value of this parameter corresponding '

1
to the excitation (Figure 7). In the case of X < Al’ the only stable station-
ary state is the state of equilibrium depicted by one focus (Figure 8). No

matter what may be the initial position of the figurative point, at the end of '

a certain length of time it will be found in the proximity of this focus.
A= xl is a bifurcative value of the parameter: the focus loses its stability

at the same time as it generates a small stable limiting cycle (Figure 9), on
which the figurative point begins to rotate. Passing to the language of
physics, we shall say that the oscillator has been excited. A increasing, the
radius of the limiting cycle becomes larger (Figure 10), and with A
decreasing, all the phenomena are reproduced in the reverse direction: the
limiting cycle is reduced to one point, and the oscillations cease. On the
physical diagram I?, (X being the amplltude of the current), we obtain a
"soft'" transition from the state of equilibrium to the periodic movement and
vice versa: the amplitude of the oscillations varies in a continuous manner
(Figure 11). ' !

Abrupt excitation. If, in the case of small values of A, the system is
found to be in the proximity of the state of equilibrium, it remains there

- 13
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until A assumes the value A = Al (Figures 12, 13, 14, 15). The creation at
the instant in which A = Ao of two twin limiting cycles -- one stable and the
other unstable -- does not disturb our figurative point since it leaves intact

the stability of the equilibrium state. In-the range X A

becomes smaller, then when A = Al,

1’

i
disappears and corrupts, so to say, jthe

singular point by its instability. At this instant, the figurative point
rejoins, following the integral curves, the stable limiting cycle whose
amplitude has gradually increased from the instant at which i = A

(Figure 16). Causing the parameter to vary in reverse, we observe that on
"return," the oscillator takes another path than when '"going." Indeed, the
figurative point will stay with the limiting cycle until the instant at which
A=A, At this instant, the two cycles are merged, impelling the figurative

the unstablle cycle

point towards the state of equilibrium. ‘The fact that when A = Al, the latter

becomes stable, produces no effect on the movement of the figurative point,

since at the instant in which A = A

its path does not change.

jZ

I RSN
ﬂy\ X.
N7

Stable focus

Figure 13

14

1

. the characteristic of the cycle used as

i

Figure 12
Unstable
focus Stable cycle.

Stable
focus
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Diagram I2,A (Figure 17) emphasizes a discontinuous ("abrupt") variation /94
of the amplitude, a variation which, owing to its irreversibility, recalls
hysteresis phenomena.

This phenomenon of abrupt excitation, quite
g2 ~ interesting for the radioemgineer, finds in the
: language of singular points, limiting cycles and
{ggkr“”ﬂ*° bifurcative values of the parameter, its natural and

: proper interpretation.’ For this reason, it can be
4// :T - immediately seen that, when XO~< A< Al the figur-
A Lo
“‘\\ : ative point can be ''cast" from one stationary mode of
i I 2 operation into another by a sufficiently strong
An A impulse. This is a claim which we suspect can be

Figuré”17. demonstrated intelligibly by semilinear theory.

We should like to discuss at this point a
concept which would have no significance in the case
of a conservative system, but which, in the case of a nonconservative system,
has a great advantage. Let a path be stable. We can delimit, on the phase
plane, a region containing the initial positions of the figurative point from
which the latter, ultimately (when t - +») rejoins this path. This region is
called the "region of stability on a large scale'" or '"region of attraction' of
the stationary movement under consideration. Figures 18 and 19 represent two
examples. :

The phase plane of Figure 18 has three singular points: two stable nodes |
and one saddle. The range of attraction of node A is the right semiplane, §
whereas that of node B is the left semiplane. |
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Figure 18 Figure 19

Let us now consider (Figure .19) a,stable, singular point, surrounded by an
unstable cycle, contained in turn within a stable cycle. The range of
stability on a large scale of the position of equilibrium is in this case the
portion of the plane contained within the unstable cycle. The remainder of
the plane makes up the range of attraction of the stable cycle..

_ ~Without providing more complicated exampleé, letsus point out that the
sharing of the extension in phase into fields of attraction comes up against, -
even in the case of one degree of freedom, some obstacles. It appears that
considerations of probability must be even taken into consideration here.

Let us note, in conclusion, that the concept of stability on a large
scale provides the unstable limiting cycles and the separating curves their
true physical interpretation. These are the boundary movements similar to
what is called, in geography, the tidal line: according to which the
figurative point is placed, at the initial instant, on one side or the other
of these components, and takes its direction towards differing destinations.

4. Autonomous Systems

The problem of autoexcitations is located in the first rank of nonlinear
multiple problems, i.e. those oscillations created by the oscillating system
itself without participation of any external forces varying with time and at
the expense of a constant source of energy (for example, a storage battery).
The qualitative questions and, partially, the quantitative questions which
concern directly the study of an autonomous nonlinear system, can be solved by
methods which we have described. We have already shown the appearance which
provides the use of these methods to the problems relating to soft and abrupt
excitation, and to transitory phenomena. Quantitative methods of approxima-
tion allow, as we have stated, finding:the amplitude of autoexcitations and




frequency correction in the case of praetically sinusoidal oscillations. Let
us comment that, in these problems, at. least. insofar as it only concerns zero
approx1mat10n the methods pointed out only place previously known resplts
solidly upon a mathematical base. In this way, in certain cases, it is
possible to precisely demonstrate the-existence of periodic solutions and
establish their stability. We estimate that these demonstrations of existence
have a high degree of usefulness and the following is why. .

When we set up as a differential equation any problem of physics, we are
always forced to simplify it. We do not write the equation of the problem
which is provided us, but that of a simplified and idealized problem. Now,
can we have the certainty that we have not disregarded any of the essential
features of the real problem? The situation changes if we have demonstrated
,the existance of a periodic solution which has an existance confirmed by
experience, This demonstration is an argument to maintain that we “have not
omitted essential features, considering as the latter those which allow
production of a stationary oscillation.: But these are only indirect data.
The same will not be true if it can be demonstrated that the differential
equations do not have a per10d1C\soiution *wWheréas the system which they claim
to describe does possess such solutions., We then have the certainty of having
disregarded some essential feature, and we attempt to recapture it.
Practical experience recognizes cases in which investigation for demonstra-
tions of existence has suggested the means ' of making up for omissions of
this type and placing further discussion on the | proper route.

Pl

Vi

The followiﬁgﬂié ene of the most eiemeﬁfaffAexamples'MWEQeryeﬁemkﬁoﬁgwﬁeﬁ f

many manuals -- chiefly among the older ones -- describe the theory of the
bell or electric switch. The armature, in the state of equilibrium, closes
thecircuit of the electromagnet. When a battery is placed in the circuit, the
electromagnet attracts the armature, the current is interrupted, the magnet
loses the force of attraction, the spring replaces the armature into its
original position and, as the expre551on goes -- among so many others, the
game continues. If this reasoning is translated into differential equations,
it is possible to show very easily that they do not permit the game to
continue and that they allow only a periodic solution. Some essential point
"hastherefore been disregarded. In reallty, the theory of switches is less
simple than it appears at first glance. Self-induction is essentially
necessary for oscillations to be possible at all. Mr. Leontovitch [17] has
successfully discussed the problem of the switch and has clearly shown that
not only is self-induction necessary for the existence of the phenomenon, but
that it becomes a factor in the period of oscillations, this period differing
from that of the tuning fork or armature. Other examples could be quoted
showing the actual utility of investigations devoted to questions of exist-
ence. ;
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Radioengineering often reveals condltlons in which oscillations are
practlcally sinusoidall. However, during these last two years, and to a great |
extent owing again to the works of van der Pol, interest has grown for| systems
carrying out oscillations which greatly differ from the sinusoidal sha%e and
may be termed oscillations "of relaxation.!" - The characteristic of these
oscillations is essentially a function of the resistance or parameterg
equivalent to it. This signifies that in the equation of the type:

Lj+ =14 )—Ri=0¢@ 0 (8)

¢

which describes the autoexcitation system. The function ¢(q, a) is not
limited to small values as in the case of approximately sinusoidal oscilla-
tions, but, as van der Pol has pointed out, may take on considerable values.
Since it is given that concerned here are periodic solutions, this case is
entirely within the purview of the qualltatlve theory of Poincare. The
singular unstable point is here-a'node)} and 'the” periodic solution corresponds 3
to a limiting cycle.

According to the most simple hypotﬁesis when the characteristic >
of the tube can be assimilated to a cubic parabola the equation can be ‘
described in the form: 4

b e(1—0) - =0

(9
where, assuming v = y, in the form:
dy v .
a—~8(1—v2)+~y—=0. - | (10)

if ¢ € 1 we have oscillations which are almost sinusoidal ('"Thomsonian"
oscillations). However, the qualitative theory is applied to the general case |
no matter what the value of € may be. When ¢ < 1, the singular point is a

focus and, when € > 1, it is a node. In both cases there is a limiting cycle.

Nevertheless, it is possible to proceed, in quantitative studies of
oscillations of relaxation, in another way. It is possible to idealize the
problem, assuming that L = 0, and to replace the equation of the second order
(9), by the equation of the flrst order

! One very simple mechanical system alLows production of autoexcitations whieh.
are almost sinusoidal. This is the Froud pendulum which has been studied by
Strelkov [18]. S
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which is easily integrated. This equation‘clearly does not allow a periodic
solution. At the expiration of a finite time, the velocity (or the elictric
current, or its derivative), represented by v, becomes infinite. Aftet
having idealized the problem in this way, it is required, in order to take
into account in an approximative manner the physical phenomenon, to introduce
a new condition consisting, in our case, in that at a certain instant the
current undergoes a discontinuity, whereas the voltage at the condenser
terminals remains constant. This assumption or "condition of discontinuity"
is phy51ca11y justified by the fact that the energy cannot vary discontinu-

ously. It is possible to provide it w1th another form by explicitly requiring .

continuity of variation of energy. This "discontinuous' theory, together with
the condition of discontinuity, allows revealing "discontinuous' periodic
movements and finding its "amplitude' as well as its period.

This manner of processing esc¢illations-of relaxation, applicable to
electric and mechanical systems, is analogous, without being identical, to
methods employed in mechanics to analyze elastic shocks. It is granted that,
at the moment of shock, the velocity changes discontinuously. The preserva-
tion of energy and momentum allows reduction of ivelocities after the shock
from those existing beforehand. This method exc¢ludes in principle the
possibility of studying what is produced duringthé‘éxtremely short duration
of the shock. The results which it gives are often sufficient since the shock
reaches its term quite rapidly. However, if we wish to follow the phenomenon
of shock itself, the problem becomes extremely complicated. It is enough to
merely recall the investigations of Hertz. Likewise, in our theory of
oscillations of relaxation, we can simplify the problem on a mathematical
basis by idealizing it. In return, we do not see how the system can '"leap"
from one state to the other.

We have applied this method to the study of electric systems with one
degreeof freedom in which the self-induction plays a secondary role [19],
well as to mechanical autoexcitation systems with small mass and high degree
of friction [20].

It should be noted that, by taking into account in this case the ''para-
sitic' self-induction, nothing is obtained which is physically of interest.
It remains the parasitic capacitance of. conductors, etc. Now, it is imposs-
ible to take into consideration all the parasitic parameters. Our idealiza-
tion has the advantage in that it allows processing relaxation systems which
are relatively complicated, such as the multivibrator of Abraham-Bloch, a
system with two degrees of freedom. This system had already been studled by
van der Pol [21], but with one essential restriction: it assumed the phenom-
enon to be completely symmetrical, and rejected the consideration that there
were transitory phenomena following an initial asymmetrical state. This
restriction allowed him to produce an’ equatlon of the second order.

i
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Nevertheless, in the general case, he would have obtained two equations of the%
second order, and this would haye»grggtly=qomplicated the problem. Our i
idealization provides, for the general case, two equations of the first order
which can easily be studied by the methods described above [22]. We hgve thus
been able to study not only the stationary: mode of operation (calculat§ the -
amplitude and period), but also the transitory asymmetrical phenomena in the
multivibrator of Abraham-Bloch. The results were experimentally confitmed.

1t
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o o Figure 21
Figure 20 o
The discontinuous theory is applicable not only in the case in which one
of the parameters is small. Even in a circuit with capacitance and self-

induction, there are cases which can océur wheré, in certain regions, the
velocity becomes so great that it is possible to replace the very swift

variation of state of the system by a discontinuity’dnd to_determine the final

result of the movement in this region by using the "condition of discontinu-
ity." Removing in this way those regions where quantitative research is most
difficult, we can solve with a precision satisfactory for all practical
purposes a whole series of questions which involve oscillations whose form is
essentially nonsinusoidal. It is possible to apply this method, for example,
to the installation described in Figure 20.

The parasitic parameters again give rise to the following observation.
By studying an oscillatory system, we always idealize it, disregarding certain
parameters (for example, the self-induction of a condenser or the capacitance
of a coil). Nevertheless, we often obtain good results. The cause for this
rests in the rather extensive properties of the mathematical apparatus
concerning which we shall not go into detail. However, there are cases where,
by disregarding certain parameters, no matter how small they are, we change
qualitatively the table of phenomena. Let us consider the system shown in
Figure 21. The circuit is formed by battery E, the resistance R, the capacit-
ance C, and an electric arc. By using the characteristic of the arc we
produce, using the customary graphic method, three stationary values of
current. Analyzing by well known methods the stability of these values, we.
find that two of them, A and B, are stable (Figure 22). However, if we
introduce a self-induction L (Figure 23), arbitrarily small, the state of
equilibrium becomes unstable. Therefore, in reality it does not exist.
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It is easy to see how cases of this kind can occur. If the order of the
differential equation from which we draw conclusions as to the stability or
instability (in the case of the equilibrium this will be an equation of the
n-th linear order with constant coefficients) does not rise owing to the
introduction of the parasitic paraméter, the"latter, if it is sufficiently
small, is not able to change anything. If, on the other hand, appearing in
the equations, this parameter increases their order, it can render unstable
equilibrium states considered stable by disregarding it. The physical sense
of this finding is clear. In composing a system of equations of the n-th
order, we only assume. initial conditions forming a system with n dimensions.

And when, by taking into account the parasitic paréﬁ%ter,mwguna155thQ%ogdgguﬂmé

of the differential equations, we concede through this a greater diversity of
initial conditions. It is then possible that among the initial states newly

conceded the conditions are right for the system to draw apart from the state
of equilibrium. A certain caution is therefore necessary in idealization.

Some words on the self-exciting systems with distributed parameters which |

play an important role in radioengineering and in the mechanics (emitters
containing antennas or wires of Lecher, tubes with the very high frequency
waves of Grechova whose grid makes up an oscillating system, telegraphic wires
emitting a sound owing to the effect of wind, vibrating airplane wings, bowed
musical instruments, organ pipes, etc.). There still does not exist a
precise mathematical theory for these phenomena. Nevertheless, it is possible
without speaking to strictly to constitute rather easily the theory of some of
them by analogy with the one, produced under rather precise conditions,
existing for the system having a finite number of degrees of freedom. This
theory allows the calculation of amplitudes, the solution of questions of
stability, etc. [23]. However, since this theory does not have a strict
basis, it is necessary to use 1its results with care. It takes into account
the most characteristic phenomena occurring in distributed self-exciting
systems. It anticipates that oscillatory modes of operation from different
frequencies can be established under the same operating conditions (the same
is true in the self-exciting systems having a finite number of degrees of
freedom). The production of such and such an operating mode is a function of
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the initial conditions, or the history of the system. These phenomena have

been produced and studied experimentally by Bendrikov and Brailo at Moscow,
as well as by Gaponov at Gorki. Tt is'possible to cause the disappearance of
‘a wave in a wire autoexciter of Lecher, by touching them with a finger|. The
system then begins to oscillate on another wavelength. When the finger is
taken away, the system under certain conditioné is not returned to the
original wave, but keeps the new wavelength. This phenomenon can likeWise be
produced by capturing the energy using & resonant circuit. Similar phenomena
occur apparently in bowed musical instruments. Strelkov has performed similar
experiments with a string vibrating under the effect of a jet of water or
air. These quite simple experiments allow the observation of phenomena

which are characteristic for distributed self-exciting systems.

Given that under the same operating conditions there can occur different
oscillating modes of operation, if the question may be asked as to which of
them is produced when the system is triggered. This question is often within
the competence of the theory of probabilities. Theoretically, it has not yet
been solved for distributed systems. The statistical phenomena are easy to
observe experimentally in the Lecher wire osgillator. They likewise take
place in organ pipes. ‘

5. Effect of an External Force on a Seif-Excitjng System

One characteristic property of self—excitiﬁg systems, quite important for

the entire range of radicengineering, is the ap?eafanbe'of“phenomena“of'M“”"“‘“

forced or automatic synchronization or frequency drive. This phenomenon,
already noted by Huygens in clocks hanging from|a same wall, was observed for
the first time in radioengineering by G. Moeller [24] and Vincent [25]. It
occasioned many experimental and theoretical investigations among which
special mention should be made of those of van der Pol [6]. In its most
simple aspect, this phenomenon consists, as is well known, in the following.
Causing to act on a self-exciting system of frequency w()an external force of

frequency w, there is observed, when the "out of tune' w - W is sufficiently

small, that there are no beats as wouli be the case in a nondamped linear
system. The system is automatically synchronized on the frequency of the
external force. A similar phenomenon occurs in a system subjected to the

effect of a force which is not periodic, but only quasi-periodic (which can be

depicted by a sum of terms of incommensurable frequencies). In this case,

the drive occurs when the frequency of the system is close to one of the
frequencies of the force applied or one of the combining frequencies. The
drive likewise occurs, as observed by van der Pol and van der Mark [26] in the
realization systems and Koga [27] in tﬁe ordinary oscillators when one of the
frequencies of the external force is close to a multiple of the frequency of
the system. When the out-of-tune condition exceeds a certain value which can
be termed a limit of drive, the appearance of beats may be ascertained. When,
since the force is sinusoidal, the misalignment or out-of-tune condition
exceeds by far the drive limit, it cam’'be broadly stated that there exists in
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the system two oscillations, one responding to the frequency of the external
force, and the other proper to the system. k Nevertheless, if the misalignment
only slightly exceeds the drive limit, thlS last frequency is shifted QOwards
the frequency impressed from the out51de and as we shall see, the whole
phenomenon becomes complicated. . Lo

The theoretlcal study of the drive phenomenon consists in searching for
stationary solutions of the differential equation:

Jroty=pi(, N+IAcos (@, 148). (12)

In the most simple case in which the electromotive force acts upon a system in

a soft mode of operation and with almost! sinusoidal oscillations, the 'curves
of amplitude'" have, as is known, the appearance shown by Figure 24. The
portions 4-7-12, 5-8-11, etc. belong to the synchronization mode. The parts
1-4-12-15 belong to the beat mode. Theoretlcally, these curves have a
symmetrical appearance, but experience” shows‘most often asymmetrical curves
(for example, those of Figure 25). This deformation is probably owing to the

presence of a grid current. This is what appears to be confirmed by the
recent results of Bakoulov (Moscow).

730 15
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Figure 24 Figure 25

In his classic study, van der Pol had studied a self-exciting system
with soft mode, assimilating the characteristic of the tube to a cubic
parabola, and was able to detail the principal characteristics of the
phenomena of synchronization and shift of frequency. Nevertheless, there are
still several questions remaining. Thus, there still remains to be explained
whether there exists, in phenomena of synchronization as assumed by
Ollendorff [28], a '"threshold" for the amplitude of the applied emf.

It was possible to show, resorting to the "truncated'" equations of
van der Pol set up for this problem that in the topographical analysis of
Poincare, the threshold did not ex1st_[gg] The van der Pol equations follow:
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in which a = —«——af———-belng the misalignment, w, being the frequency of the
self-excitations, A = —%%%3B being the émplitude of the force used,
o being a constant depending on the two parameters, a, being the amplitude of
the self-excitations, T = %E-and finally t representing time. This has also

been experimentally proven [30]. It was thus easy to show quantitatively
that in the case of a weak signal the relative width of the synchronization

band ﬂﬂﬁl—ﬂ-is provided by the ratio of the amplitude of the signal to that of

the self-excitations. This is what has permitted the application to weak 5
signals of the method of measurement of:intensity of the field by the width of |
the synchronization band as suggested by Appleten [31], [32]. A similar :
method, based on the phenomenon of synchronization of acoustic self-exciters,
has been used to measure the intensity of sound [33], [34]. The phenomena of
acoustic drive leads to an interesting problem that we are getting ready to
study, which is that of the automatic synchronization of woodwind and bowed
orchestra instruments. :
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Differential Equations

d 03
Wa’ﬂf_ =—yFx(1—r)
% = 0,30340,3x 4y (1 —r7).
with initial conditions;
» t=0, x,=1, ¥=0

<V

24 % 1




Let us return to the analysis of equations (13). If the square of
amplitude A? is plotted on the axis of .the.ordinates and detuning a is plotted |
on the axis, of the abscissas, Figure 262is produced. The resonance curves are
those of van der Pol, but our figure shows the fields corresponding toj the
various types of transitory phenomena. . It;is:possible to take an inte?est in
what is happening when the oscillator becomes active and an electromotive
force is applied to it. It is also possible to observe what occurs whén the
oscillator is triggered after having applied the electromotive force. Let us
examine the first case which is physically the most interesting. The
theoretical study of transitory phenomena consists in discussing the nonsta-
tionary solutions of the equations concerning amplitudes (13), i.e. in
following the variation of the amplitudes which are components x and y as a
function of time. These results are summarized by the diagram of Figure 26.
In order to know how the stationary oscillations are set up and with the
unbalance and amplitude of the electromotive force applied being given, it is
necessary to take the resonance curve corresponding to this emf and, on the
latter, the point corresponding to the given unbalance. If this point is |
located in the field of the stable node, the establishment of the mode is
accomplished aperiodically. Thédoefficients with slow variation in the
van der Pol solution tend aperiodically toward constant values. If this
point is in the field of stable focus, the phenomenon is oscillating.
Finally, if the point falls within the range of instability, there are no
stable periodic solutions. These results have been experimentally confirmed
in the works of Riazine [35] who made oscillographs of various types of
transitory phenomena. He calculated the solutions’ef/equation (13).by.methods
of numerical integration and confirmed the theoretical results by low-
frequency oscillograms. The calculated curves of aperiodic transition are
shown in Figure 27, those of oscillating transition in Figure 28, and the ,
respective oscillograms in Figures 29 and 30. Before the application of the i
signal there appears a pure sinusoid that the oscillograms do not show.
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integration was used to study what

The same method of numerical

§
1
. AR {
occurs to a minor degree outside of |
|

LT T ,v
"4 N \4z\~\. AT - the synchronization band. |In this
(g 2NL | b oz | 4 | #3NJisdN]. 1+ case, the nonstationary solPtlon of |
7 20| N ~ A=~ equation (13) does not tend, on the |
/0 LT N L] \\k_ x,y plane, towards a singular p01nt$
' e as in the field of drive, but is
coiled around a limiting cycle.
_ The curves showing current as a | |
Figure 31 function of time and limiting cycle

, are depicted in Figures 31 and 32.

; The theoretical results agree
closely with experimental findings (Flgure 33). The theoretical curves and
oscillograms agree to show that, with respect to the beats, the amplitude
increases at a perceptibly greater rate than it decreases.

B 98 In ordéer to set up the spectral composition
: // v of the'beats; Riadzine made the harmonic analysis
; / _ g6 of the curves of Figure 31. The spectrum obtained
: — (Figure 34); shows that in the vicinity of the
‘ < 94 - synchronization region, the application of an
\\ electromotive force|causes the appearance in the
-—42  self-exciter of a spectrum which has equidistant
x \qo s -40 s \\ﬂZ , “combinative: frequenc1esf Elearly delineated. o
T\ Oscillograms were produced for the beats in the
vicinity of. the synthronlzatlon bands for ratios
\\\\ [~4“ﬂ2. of frequency characteristic for the frequency
\ __AH:;// 0, applied which were approximately equal to 1:2,
~__ ’ 1:3, 1:4 and 1:5 (Figures 35, 36, 37, 38). It
g6 becomes obvious from these oscillograms that in

increase, then slow decrease of amplitude.

Figure 32

the vicinity of the limit of forced synchroniza-
tion we have, as in the case of ratio 1l:1, a
pulsation of amplitude. The envelope of beats

always shows practically the same aspect: rapid

vicinity of the synchronization band, the oscillations cannot be expressed by

the sum of two sinusoidal terms as has been done up until now.

least three oscillations of amplitude which are almost equal.
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The study 11kew1se was concerned with the phenom-
ena which occur in the case of "abrupt" modes
(H. Sekerska [36]). The so-called field of potdéntial
self-excitations has, in this case, a special interest.
In this field, the resonance curves end in a pedk,
recalling those that we produced in the resonande
phenomena of the n-th class (section 6). 1In addltlon,
phenomena were observed there which we have termed
asynchronic excitation (section 6).
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There still exist phenomena of synchronization in
, the combinative frequencies given by several electro-
Figure 34 motive forces. We shall give as an example here a
special case which we observed some time ago: the
synchronization "in the middle." The oscillator is
tuned approximately to the frequency Wi.%%lﬂi; Wi, being the frequencies of
the two electromotive forces. Synchronlzatlon phenomena are then clearly
observed, and especially so when there ‘exists 'a“simple relationship between
the frequency of the oscillator and those of the electromotive forces. It is
understood that this phenomenon is an important one in the case of reception
without carrier wave. In reality, when the carrier frequency is produced on
the transmission site it is for practical purposes quite difficult to arrive
exactly in the middle of the side frequencies, this belng, moreover,

absolutely necessary. The phenomenon which has Just“been described lends its .

assistance: the frequency of the oscillator is jautomatically located in the
middle of the side frequencies. For this purpose, it is enough for the
oscillator to be only approximately tuned. Some similar phenomena occur when
the oscillator is tuned on the frequency El—%—ﬂz3 on the other combinative
frequencies and their submultiples. Theoretically, the phenomenon of "in-the-
middle'" synchronization has been studied by Goldstein and Petrossianl.

Figure 35

U"The publication is in preparation. =
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Figure 36

Figgr¢ 37

Figure 38 RS

6. Resonance Phenomena of the n-th Class

We shall devote a special paragraph to the phenomena which can be termed
resonance of the n-th class. The mathematical theory of these phenomena is
based on the results provided generally, without any relationships to the
physical applications concerning us, in the well known works of Poincare [2].
Poincare shows that in nonlinear systems there can exist periodic oscillations
whose period is a multiple of that of the force applied (''periodic solutions
of the second class'"). It is useful for the discussion to follow to call a
potential self-exciting system any nonself-exciting system which becomes self-
exciting if the regenerative feedback is sufficiently increased or if the
value of any other parameter is suitably modified.

We referred (section 5) to the phenomenon of forced or automatic
synchronization which occurs in self-exciting systems subjected to the effect
of a sinusoidal force which has a frequency close to their own frequency.

Koga [27] as well as van der Pol and van der Mark [26] have observed similar
phenomena in self-exciting systems subjected to the effect of a force whose
frequency is a multlple of their own frequency. As for potential self-
exciting systems, it is observed in this case that when the frequency w of the
applied electromotive force is equal or approximately equal to a multlple of
its own frequency, the mode of operatlon being suitably selected, there is a
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spe01a1 phenomenon of synchronous exc1tat10n As long as its own period is
not close to a multiple of that:of the applled force, a potential self-
exciting system is the source of very weak "forced" oscillations. Neverthe—
less, when the system has its own frequency sufficiently close to ;

§3 n being an integer, there can appear inténsé oscillations of frequency
H

exactly equal to =1,

This is the phenomenon of resonance of the n-th class
[15], [37]. '

There still exists, in potential self—exciting systems, another phenom-

enon which should be mentioned here. The resonance of the n-th class requires

a well-defined mode of operation of the tube. If, starting from this mode of
operation, the regeneration is 1ncreased quite sllghtly in order that the
system does not become self-exciting, there may be seen to appear, under
certain conditions, no matter what may be the period of the emf, intense
oscillations almost identical to the own oscillations of the system. To

these intense oscillations are added very weak "forced" oscillations in such a

way that the phenomenon in its own system is almost periodic. It can be then
termed asynchronous excitation [397] [40],’{41]

In the more simple case of n = 2, when the emf E = E sin wt acts upon an

oscillating circuit interposed between the plate and the fllament of a tube
whose characteristic can be represented by a polynomlal of the third degree,

the equation of the phenomenon (the grld current belng assumed nonex1stent)
can be described in the form: v ;

df,‘_‘ L (l" . (il Y e o .
Cﬁ'g;-!<f<'htw 1:=k»<dj\4 Cligmcos of (14)

in which

i G (Y g (Y
fo <d1‘> i l g - it 4 Lo -t Yo (d[‘) .

We assume that Yo © 0. Using suitable transformations and notations:

i

T"The capability for exciting a potentlal self-exciting system on a frequency

equal to the half of that of the emf has been likewise reported by Groszkowski

[38].
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The equation can be rephrased in the form:
§+x:yf95@—3qmn2r
in which

p (2%, %) v z,dz [T_j]}if [ (%) — 219'):] -+

o Ttl% X=p [_(k o+ 2% px®) X -3--76; x] ;

4 g
_‘_,<O - a
Y11= , M N
and the regenerative factor
I - ? (] ’i)
v omm e f)

Applying to equation (16) the van der Pol method, we produce by the

transformation:

UoCOLe ¢ osin Yy
24 cos 2

X: 11 Sin v
X1 COST-4U Siit v

the system of truncated equations:

T ”/ 2L qu)l v <q N »;f)} |
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v—' ”ﬁi {[klffl (z »l-éq")} v¥u <f1 ;)} | (20)

|
z = u2 + v2 being the square of /the instantaneous amplitude. E
These équations may easily be solved if ¢ = %-and z [42] are seleéted as
variables. Their initial values will be designated by w()and Z .y Granting
that:

&
L) 1t S :
m== ' »—-*g— y 2p==p 'i/qz R M=y (/\ i yéc )
b (21)
. pq 4 st ;“l'}’ll »
we obtain the solution in the following form:
g Ve (e oy (22)
' D~ g - (11— 3py) i T
: (\ﬂ . QO_C€~2];1 'l c—»»;ipz ‘ ;
2 == Zst"f"z M + ? o - ey e T8 ‘
f A P P . p M ! ?P -~ (M -}-2p)T ,
—'2'_(;’\ ((; Pes ,)'(’ L. '!“ 1) = C Rihiind ?\’.’ T “7‘;}1‘“' - C"I hj\r/‘:'—/m' 2/) 0 l -
C2-—20Ce " - e
SV [
v . MA4-2p o opr  M-F2p e (23)
- lcz — 20 ———M—-—- Ce -} 'AZ ““““ 5 ’]5 8 -

Equations (22) and (23) approximately describe what occurs beginning from
any initial conditions whatsoever as well as the case when the system is not
excited (k < 0) as well as when it is self-exciting (k >0). Ifg=20,e =0,
p =0, i.e. if there is no applied force, we resort to the van der Pol
solution for autonomous systems [6].

It is evident from (23) that z only tends toward a constant value Zot

different from zero when p is real and M + 2p > 0, i.e. when




g . (24) |

and

p ot - f
 -l- - L__ + /q S0 | (25)

these are the conditions of existence of constant solutions in the case of u
and v. These conditions fulfilled, periodic oscillations (cf. formula (18)
whose period is double that of the emf will establish themselves in the
system. These oscillations with double period only appear in a limited
frequency interval characteristic of the system and the phenomenon recalls,
by its appearance, certain resonance phenomena The term "resonance of the
second class" (and, more generally, of the n-th class) recalls that this

theory is closely connected to the ex1stence”0f “periodic solutions of the
second class of Poincare [2].

Being given that Yy < 0, condition . (25) cannot be fulfilled in the case

of a potential self-exciting system (k < O) except when the value of q is
included within a certain interval Gnin < 4 < Yoy We state that there is a

"threshold" and a "ce111ng" for the value of emf wh1ch is capable of eXC1t1ng
in a potential self-exciting system double perlod oscillations. In the case
of self- ex01t1ng systems, condition (25) is fulfilled no matter how small q
may be. There is therefore no threshold for automatic synchronization of a
self-exciting system with a period the double of that of the applied emf.
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The square of the amplitude of-thezstationary oscillations with a
period double of that of the emf which have been excited by resonance of the
second class is provided by the formula: !

|

?

' ‘ | %

4 2 _‘?} R

2, = - A — i |
g [ g ey
) : i

According to this formula, the stationary amplitude is the function of
the detuning e quite otherwise than in the case of ordinary resonance. The
curves which provide z as a function of ¢ -- they can be termed resonance
curves of the second class -- are shown|in Figure 39 (theoretical) and in
Figure 40 (experimental). Formula (26) i likewise provides the stationary
amplitude as a function of the value of 'the applied emf. This function
("characteristic of amplitude') is depicted in Figure 41 (theoretical) and in |
Figure 42 (experimental). Note that the "excitation band" (i.e. the frequency |
interval in which the second-class resonance occurs) equal to zero in case of |

q = q; becomes wider at first 'a$'q increadds;” then decreases and again Ar11
drops to zero in the case of q = q___.
max : .
’ . 100 S |
¢ — Lymex l i
Amax &0 fats 4:»,,\\
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03—t \ 60 / \0 . |
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Figure 41. Char- ‘ - |
acteristic of Figure 42. Character- i
Amplitude (Theor- istic of Amplitude ’
etical) (Experimental)

The increase of oscillations up to the stationary amplitude has quite
another characteristic than in the case of ordinary resonance as shown in '
Figure 43. The latter depicts the variation of amplitude as a function of
time beginning from the instant at which external force becomes a factor in
the resonance of second class (curve 2) and in ordinary resonance (curve 1).

Let us note the similarity between curve 1 and the curve expressing the
increase in amplitude of self-exciting phenomena. This similarity is not |
accidental. Whereas in ordinary resondnce, the excitation of oscillations
takes place no matter what the jnitial conditions may be and can start more §

i



partlcularly beglnnlng from absolute equilibrium
(i =0, dt

in self- exc1tat10ns of pulses, whether they are very
small or not; theyare nécessary to cause the system to
deviate from the 1n1t1a1 state z, = 0. The p051£10n of

= 0). In resonance of the second clasgs, as

equilibrium of a potent1a1 self-exciting system which
satisfies resonance conditions of the second class

Figure 43 becomes, under the effect of external force, an unstable
focus enclosed in a stable limiting cycle.

The special characteristic of the curve of growth of the oscillations in
resonance of the second class can be used advantageously for practical ends
(cf. below). ;

When the system is in an abrupt mode of operation, resonance of the
second class shows certain special features. Thus, there may be observed at
the boundaries of the regions of“ex¢itatfon“"'fé§istance” phenomena owing to
the partial superposition of different ranges of dynamic stability. If the
characteristic of the tube is expressed%by a fifth-degree polynomial, as has
been done successfully by Appleton and van der Pol [43] as well as by other
authors [44], in the case of self-excitations it is possible, by applying the
methods of Poincare (cf. section 2), to provide jan approximate theory which

takes into account satisfactorily all the characteri§tic properties of the . _

phenomena. Figure 44 provides the resonance curves of the abrupt mode of
operation calculated in this manner. They agree closely with experimental
results (Figure 45).

- -35
. [ - ‘: j 3
Lmp ; ] Lo Oy Pl s e e 0T
’ | 25 q“r/ \Y ﬁ lf\‘} - éo- ?\\)
! \ A il ; g LY
¢ _ ik b ! MR 3 [N
< 2 i o ' (K ! K
S 15 H H T
| .. -
; ‘ §HH j L y Ho
|- { f I {( ! ¥ T ™ i : T
PP K43 S e s ey ~LQ§0#/—K {‘§M’=t
g {X WEE , i) 20 1Ey s . b= A2 38 Yoy et L i S iy SR/ m
il = i e T B A S W T T2 P o | [£0] -
e} (s 4 1 "i 17 v WEN T 'é By ; é”
4 R/ T T bt bt b b & o
Figure 4k Figure b5. L y630,,; 0 15, = 101 0,5 ¢ £y =179 0,

of the tubel
| S

34 o

v, V;=8,34 v, in the case: M 28, v = i ,047.10°

(il



When an experimental study is made of the resonance of the second class !
in systems with abrupt excitation, certain; precautions should be taken in %
order to avoid the phenomena of asynchronous excitation as defined aboye. It |
has been shown theoretically [39] and confirmed experimentally by E. Roub- %
tchinski [45] in one of our laboratories (Central Radio Laboratory) that - 5
asynchronous excitation is only possible if the mode of operation is aprupt E
and if the values of the regenerative feedback and the amplitude of the emf |
are each included within a specific range. Figure 46 shows the modes of
operation corresponding to the different values of the feedback factor k. The |

region to the riggt of zero is that of spontaneous excitation. Between zero
and A (0 > k > —%lﬂell) is found the region of resistance. It is possible to

produce, to the left of A, assuming the%circuit is suitably tuned and that the

emf has a suitable value, the resonance. of the second class. In addition, in

AR g
: LN ¥y

the shaded portion between A and B 0_-gﬁ¢->>k:>~“ 6£T)‘ there can occur
: %1 i51 !
: R ~ ;

phenomena of asynchronous excitation.. In order to produce, in the pure state, |

resonance of the second class, it’'i's neces¥dly ‘to work to the left of B. This

is a very important matter for receiving stations making use of this

phenomenon. 5
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The transitory phenomena in resonance of the second class in an abrupt
mode of operation have been studied by A. Melikian [46]. His experiments
show that the phase is set up much more quickly than the amplitude. Theory
provides, in the case of the soft mode of operation provided that customary
numerical values of parameters are taken, the same result. Assuming this
condition to be true as a hypothesis in his calculations, Melikian obtained
for the abrupt mode of operation relatively simple theoretical formulae.
Figure 47 shows one of the theoretical curves of growth of oscillations. We
have reproduced on these pages some oscillograms produced by Melikian. The
one shown in Figure 48 which was produced using an electronic oscillograph
with an incandescent cathode requiring| the synchronous repetition of the
phenomenon shows the effect of a rectangularly shaped signal. The oscilloz" -
grams shown in Figures 49 and 50 illystrate the increase and decrease of
oscillations in a triode transmitter and in a potential self-exciting system




under the effect of a force of
. double frequency and of its own
frequency. They were taken using
. an oscillograph with a cogd
. cathode and with an inside photo-
graphic device which allowed the
recording of a single event.

The theory developed for the
. resonance of the n-th class
' likewise allows the analysis of
phenomena of automatic synchron-
ization of a self-exciting system

Figure 48 ; on a frequency equal to a
submultiple of the frequency used

[37]. Just as in the ordinary

drive (cf. section 5) there is no threshold for the emf and the decrease of
the latter only causes the synchronization band to become narrower. Theor-
etical and experimental data shéw“that“abBove''a‘Gertain limit, the amplitude of
the "self-excitations' decreases when the amplitude of the force increases
and, beginning from a specific value of .the latter, becomes equal to zero.

The self-excitations are damped by the émf and there only remain in the

system forced oscillations having the frequencyiof the emf.

Figure 51

36

Figure 49 ; ' Figure 50

Theoretical investigations conducted by the Central
Radio Laboratory have shown that it is impossible, in a
potential self-exciting system with one degree of
freedom and with a soft mode of operation, to produce
oscillations whose resonance is of the third class.
Experimental data ishow (Tschikhatchov) that oscillations
synchronized in a iperiod three times that of the emf or
resulting from an asynchronous excitation can be
"driven" to the left of B (Figure 46). In potential
self-exciting systems with two degrees of freedom and
more, it is possible to excite oscillations whose

NO
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resonance is of a higher order. Tschikhatchov produced resonance phenomena of
the fourth class in the installation described in Figure 51.

%

Resonance phenomena of the n-th class have a certain relationship!with
the excitation of oscillations by, periodic,variation of parameters of ‘
system. This is the "parametric excitation'" to be discussed in the following
paragraph. . In reality, we can consequently interpret, in a purely qualitative
manner, the excitation by resonance of the n-th class. The external force
acting on a potential self-oscillating system causes first of all to appear
there "forced" oscillations which have the same period as the force. By
reproducing the reasoning used to analyze the stability of a movement by the

methods of Poincare and Liapounov, we can consider our system as nonlinear

and, in the vicinity of the forced oscillations, like a linear system whose

parameters are functions of the "forced" solution q sin nt. The properties of
this linear system with parameters varying periodically are well known
(section 7). If it is located in one of the regions of instability, the
forced oscillation will be unstable and the system will perform increasing

oscillations whose frequency will be a submultiple of that of the force. This |

method of reasoning offers certain“advantages,“and it is often useful to
consider the resonance of the n-th class as a sort of parametric excitation.

i

In order to distinguish the parametric phenomena in their true sense which
occur when the parameters of an electric or mechanical system are caused to
vary indirectly with those of resonance of the n-th class, we shall call the
first ones heteroparametric and the second ones:self-parametric.

| i

The phéndmeﬁa>WHiéh have just,been;déscribéd“ﬁd$5éés prdpertiééuéilgﬁihg Hﬁ

hope for certain advantages in their practical application. Experience has
shown that resonance of the second class can be'used successfully for
demultiplication of frequencies as well'as the production of very high
amplifications in cases in which the frequency should remain quite constant
as, for example, in the case of emitters with independent excitation, and
above all in the case of reception.

The resonance curves of the second class with abrupt edges, the existence
of a threshold and a ceiling for applied emf give rise to new capabilities for
selective reception. Nevertheless, it should naturally not be forgotten that
with receivers as well as with high-speed operating automatic tranceivers,
we are dealing not onlywith stationary phenomena, but with phenomena of
increase and decrease which, as we have seen (Figure 43) are essentially
different from those occurring in the case of phenomena with ordinary
resonance.

Experiments performed in 1930 and /1931 under practical conditions have
shown that the applications in a radio receiver of a device with resonance of
“the second class used as a selective filter (''self-parametric filter'") gives
excellent results. Figure 52 reproduces a photograph of two simultaneous
recordings of signals emitted by radio station WCI (wavelength 16,317 meters)
made on 4 February 1931 at the radio receiving exchange of Boutovo, near
Moscow. Track a comes from a radio receiver furnished with a self-parametric

A Gda
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: |
filter. Track b comes from a radio receiver which has a crystal filter. The ?116
difference is obvious. . I R
, ‘ | ,

Figufe 52

The prolonged tests of a radio receiver with self-parametric filter
performed at Sagaredjo, near Tiflis, in 'a region which is subject to intense
atmosphericdisturbances, have shown that this filter is very effective in
separating a prolonged harmonic action from a brief pulse. '

This property of systems with resonance of the second class is explained
by the characteristic of the law décordifig to Which oscillations increase. i
Whereas, in a linear filter, a brief pulse (with respect to the duration of |
the point) which is sufficiently strong.can cause oscillations whose amplitude |
is comparable or even greater than the one supplying the signal. Here, |
owing to the peculiar feature of the curve of increase, it only gives small i
oscillations. In this way, the self-parametricifilter practically suppresses
atmospheric. disturbances which have the form of sho¥t; pulses, although they
may not reach a very considerable value. This insensitivity towards atmo- 3
spheric pulses continues when they are superimposed on the signal.
Nevertheless, very strong atmospheric discharges given effect of
"fractioning" of the signal (observed by I. Borouchko and N. Weissbein in
1931). In the recordings on tape there are certain signs (dots or dashes)
which show discontinuities (1, 3 on Figure 53).

Figure 53

Figure 54

This last phenomenon was studied in one of our laboratories (the Central ;
‘Radio Laboratory) by A. Melikian. Using the oscillographic method in a very
skillful manner, he examined in detail the simultaneous action on a ;
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self-parametric system of a signal and a. short pulse (series of damped
oscillations). He showed that "fractioning' occurs when the pulse arrives at
an instant in which the double period oscillations owing to the signal jare
already almost established (Figure 54). However, if the pulse arrivesat a
time when the double period oscillations'.arestill weak, it accelerates their
growth. Figures 55 and 56 allow comparison of the oscillograms of incfease

- and decreasé of a self-parametric system (Figure 55) with those of a linear .
system (Figure 56). ' ‘
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Figure 55 ; _ Figure 56

7. Parametric Excitation ' E ;

The phenomena produced by an external action in nonlinear circuits

(section 6) are closely related to the excitation of oscillations by periodic
variation of the parameters of an oscillating system. This effect, that can
be called for short parametric excitation, has been known for some time to
physicists (Melde [47], Rayleigh [48]). The great importance that it has in
radioengineering is likewise known. However, although the possibility of
parametric excitation of electric oscillations has been known for a long time
(Rayleigh [49], Poincare [50], Brillouin [51] and later van der Pol [52]), it
is only in the last few years that this phenomenon was realized for its full
value and its systematic study was undertaken. We should like to mention the
experiments of Heegner [53] and Guenther Winter [54] on the excitement of
electric oscillations of acoustic frequencies by alternately magnetizing the
iron nucleus of a self-induction winding as well as the experiments of
Guenther Winter [55] and I. Watanabe, T. Saito and K. Kaito [56] and the
excitation of electric oscillations by mechanical periodic variation of the
self-induction of an electric oscillating system.

We have likewise performed experiments on the parametric excitation of
electric oscillations by mechanical periodic variation of the self-induction
[57] of a circuit, but using very different devices from those used by
Guenther Winter and Watanabe. In addition, we produced the parametric

¢
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excitation of electric oscillations by perlodlc variation of the capacitance
of a circuit [58]1. U
§

The authors mentioned are limited, »as to theory, to the use of the linear
dlfferentlal equation with periedicalicoefficjents which provides the i
excitation condltlons but can say nothl'g as to the capablllty and character-
istic of a Statlonary mode of operation. Now this question is no less
important than the preceding one. This is why we begin with a general over-
view of the theory of parametric excitation, a theory which should be
supported, in order to be complete, by a nonlinear differential equation.

It is easy to show by consideratioﬁs of energy, that it is possible, by
causing the capacitance of a circuit to suitably vary, to excite oscillations
in the latter. Let us assume that at an initial stant t = 0, when the current
is equal to zero and the condenser possesses a charge q, we reduce its

capacitance by a small quantity AC. HaV1ng done this, we supply the work

ggz qz Let us then allow the condenser to discharge and at instant

RYSIEee)

t = 4 (T being the period of the c1rcu1t) when all the energy is magnetic and

the charge of the condenser zero, let us restore its capacitance to its first
value. We do this with no expenditure of work. at instant

t= 5 :

the current is reduced to zero and the condenser carries a charge which is
greater or less than q, according to which the energy supplied to the system
as its capacitance is reduced represents an excess or deficiency with respect

to the energy expended. At instant t = %3 the cycle of variation of

capacitance is complete. Let us phrase this otherwise. The oscillations will

TW. L. Barrow wrongly assumes that his experiments (Proec. of the Inst. of
Rad. Eng., Vol. 22, p. 210, 1934) shows the capability for the parametric
excitation of an oscillating circuit by, periodic variation of its capacitance.
He causes the variation of not only the capacitance of an oscillating circuit,
but the ohmic resistance of a shunt containing a condenser. Now, the vari-
ation of a positive resistance can be carried out (and is carried out) without
expenditure of energy. This device therefore does not allow, by its principle
alone, supplying to the circuit by mechan1ca1 work, of the energy necessary .
for the excitation and maintenance of oscillations. There is no doubt that
Barrow has observed in his experiments not only the parametric excitation of
oscillations by periodic variation of the capacitance, but also phenomena
owing to the presence of an electronic tube and from regenerative feedback.
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gradually increase no matter how small the initial load provided that the
following condltlon be fulfllled ‘

o

s¢ ‘2“"1 . T |
o P R g |

or

e being the mean logarithmic decrement of the system and

17 == 4ac — gmax'__ Cmm

2 Copt Comn

min

being the '"modulation rate' of the parameter.

The initial load g always is present, even. in ‘the absence of outside

disturbed inductions (electric lines, atmospherlc discharges), owing to
statistical fluctuations. :

We therefore can, by causing a periodic variation through a mechanical

process of the capacitance of a circuit with a frequency the double of its own

frequency and there excite electric oscillations without using any electro-

motive force. A similar reasoning is applicable in the case of variation of

self-induction.

This abridged discussion is enough to show that in order to produce
parametric excitation, two conditions should be satisfied:

1. The frequency of variation of{the parameter should be suitably
selected (in our example it is the double of the frequency belonging to the
circuit).

2. In the case of a given mean logarlthmlc decrement the modulation
rate of the parameter should be suff1c1ent1y hight.

T"In case of sinusoidal variation of the capacitance, the condition

m > %—is to be replaced by m > %e.




A more complete study of the initiation of oscillations in phenomena of
parametric excitation, leads, as is known, to the discussion of "unstable"
solutions of linear differential equations with periodic coefficients.

for example, the capacitance varies according to the law:

T ) .
—C~=a (I +m cos »1) 1

we have for

q=f far

the equation

L - E\»[u6 (i 4+-m cos ) g==0

which leads to the form .

5c'+ A2(1 - my cos 27) x =0,

(equation of Mathieu), by granting

R vt 2 (0} — &)
T2 T == 12 e O
qzxezL’ 5 .
. ' .
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:Gwog'LCO’ 26~'L1’ ml—_mwzm(32
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(28)

(29)

Equation (29) was discussed from a mathematical viewpoint by Mathieu, Hill,
Poincare, etc. It was also discussed, with respect to our present problem, by

Rayleigh, then by Andronov and Leontowitsch [59] and by van der Pol and

Strutt [60]. It is known that equations of the same type appear in a great
number of problems of celestial mechanics, optics, elasticity, acoustics, etc.
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The general solution of equation (2@) is in the form:

X=Cy "y (2) + Coe ™y (—1),

'
|
{
|
i

X(8) being a periodic function. In order for there to be parametric ekcita-, (120
tion, it is necessary for h to have a real part which has an absolute value ’
which is greater than 8. This condition between the parameters A and m

defines the "unstable regions" of equation (28).. They are located in the o

vicinity of the values Z%l-= n, n being an integer. Their boundaries can be

calculated by the approximative method of Rayleigh [61]. Thus, in the case of
the first region of instability (n = 1), we have, with values on the order of
approximately m?:

.E/F1,kE//F@;;:252Ezg$}ziﬂ//iy~—l/fég;ﬂ40; (30)

in order to find the second region (n = 2), terms on the order of m"* should be
taken into account. It follows that: | § ‘

i Lty

; E/\4_*_ i r122_|.‘i7,714_6419;52_$~12
Eigf/r4-#'%""2""]//Ftn4?~640?

/ (51) L,

The width of the regions of instability decreases as m".
As is shown by relations (4), (5) in order for initiation to be possible,
it is necessary that, in the case of n'= 1:
. m>40 (32)

and in the case of n = 2:

m=2y (33)




The modulation rate required for initiation is therefore greater, the
decrement remaining the same, in the case of n = 2, than for n = 1.
Initiation becomes still more difficult in the case of n = 3, 4, etc. Hhis is
why the case of n = 1 is, for practical purposes, the most interesting.! It is
the only one which we shall discuss here.. - : ‘ :

1

é

If the .linear equation (29) was exact for any values of q, the amphitude
of the oscillations, once conditions (30) or (31) were fulfilled, would
increase beyond any limit. It is therefore necessary, in order for a system
with periodically variable parameters to reach a stationary mode of operation
and become a generator of alternating current, that it conform to a nonlinear
differential equationl. In this case, the linear equation (2) is only valid
(approximately) in the case of sufflclently small amplitudes. It allows only
the setting up of conditions (30), (31) Wthh should confirm the parameters
for which there was initiation.

As will be seen, our experiments confirm this manner of regarding the
phenomenon. In order to obtain a permanent mode of operation, it is necessary
to introduce into the circuit nonlinearicomponents such as an iron core coil,
incandescent lamps, etc.; in the first case, the equation of the problem is:

@i, m s 20t g

o

dqv((l)
(34)

, ) ‘

with the nonlinear dependence (¢q) of the flux w1th respect to the current
being given in the form, for example, of a polynomial. The mathematical

theory of the phenomena includes, in addition to the research of the condition

in which the state of equilibrium becomes unstable (condition of initiation),
the search for periodic solutions of equation (34) and discussion of their
stability.

If the nonlinear part of the self is small with relation to its linear

part and if, in addition, M is small, it is possible to apply to this equation
the methods of section 3. In the most simple hypothesis in which:

2

DD = At Lo ity 2

it follows by granting:

1" The problem, likewise a nonlinear one, of the frequency modulation of a
triode emitter has been studied by S. Rytov in an article carried in the
journal of Techn. Phys. USSR,
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whose solutions approximately confirm the "truncated" equations:
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or which can be treated by the methods of section 2. The stationary solution
is: *

y me(l—&p
-fz~— §+Smn%i//~ﬁ§er—4&
whence the condition:

n(l—& = 46 A (37)

practically identical to (32)

The curves of Figures (57) and (58), which can be called heteroparametric
resonance curves (cf. section 5) provides z (the square of the amplitude) as a
function of the "unbalance'" ‘€. They differ essentially from the ordinary
resonance curves and resonance curves of the second class.

As shown by Figure 57, whereas:

m e
§<: 'L//-A_(l ) -46“ ( when ¥1<<0)
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no oscillation being observed. When: 5 .%izz
' TS
j e T T i

the oscillafions begin, starting with small amplitudes and, z increasing,
gradually amplifying. =z increases linearly until, the unbalance assuming

value
: mr . ;’1 |
§:> E/~4— (1 — &2 — 4682 . :

the oscillations stop abruptly.
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As shown by formula (10), theory, at zero approximation, is only limited
on one side, the unbalancee . Stable finite amplitudes exist outside of the
range of values of € in which the conditions of initiation are fulfilled. In
other words, the parametric oscillations, once excited, can be "driven'" into
the regions where the equilibrium is stable. When evaries in a reverse f
direction, the oscillations appear whene = —81, then decrease in order to i
disappear when € = <4 Resistance therefore appears on only one side. In
order to calculate the extent of the resistance circuit as well as to solve
several other questions, u will have to'be used and the harmonics taken into
consideration. Figure 58 shows that when Yy ? 0 the phenomenon is reversed:
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z increases whereas ¢ decreases, and the resistance circuit appears for
positive values of € = g L

These two cases were observed experimentally by W. Lazarew [66]. E
V. Gouliaev and V. Migouline [62] have shown that the same results are:
produced by expressing the flux, as Dreyfus [63] and Zenneck [64] have|
proposed, by the function: ‘ i

D () = Dy arctan(kq) + Ly7.

We set as a goal in our experiments production of the effect of para- 7123
metric excitation and the confirmation of the theory described above. S

Figure 59 _ Figure 60

We shall cause to vary, in the first experiments, the self-induction of a ;
circuit using a device that can be seen on Figures 59, 60, 61. The variable
self-induction was composed of seven pairs of flat coils fastened face to face
with two parallel disks on the periphery of two circumferences. A serrated
metallic disk was able to rotate within the interstice contrived between the
coils. The teeth, likewise seven in number, were cut in-such a fashion as to
fi11l, then empty simultaneously the field of the coils. As the disk spins,
the self-induction of the circuit decreases when the teeth enter the field of
the coils, then increases when they leave it. By using a disk made
from duraluminum, we were able to achieve a peripheral velocity of |
220 m/sec and, in this way, attain a considerable frequency of variation of 1
the parameter (1700-2000 per/sec). The coils were supplied with iron cores f
divided in such a way as to increase self-induction and concentrate the field. %
This apparatus allowed production of parametric excitation of rather powerful |
oscillations in the circuit shown on Figure 62 which has no current or voltage |
source. By tuning this circuit on a frequency approximately equal to !

(hdd

g
B
=]
EEE; ‘
S
&
&
=
>



§
%3 w being the frequency ofg

'

variation of the sehf, i
there may be ascertained
the presence of oscilla-
tions whose frequenky is

The.

exactly equal to %n
amplitude is swiftly
increased until the
installation is broken i
either in the condenser or /124
in the conductors of the
circuit. In our exper-
iments, the voltage went as |
high as 12,000-15,000 v.
In order to produce a |
stationary mode of opera- |
tion it was necessary, as |
required by theory, to
introduce into the system a
nonlinear component. This

‘ was, in the first exper-
iments, a group of 100-watt incandescent lamps branched onto the oscillating
CiI‘CU.it . . - ‘ R N - T — ot s e

§

Figure 61

e

o , ' More detailed experiments were carried
__L NNVVWN7§E§§E§_f_ : out in our laboratory of the Institute of %
f ., Electrophysics of Leningrad by W. Lazarew [66]
i l; ésv with an apparatus providing a greater modula-
i tion rate (40% instead of 14% in the first
ﬂ_ﬁr“:f' experiments) and a greater power (as high as

o - 4 kw). The device causing the self-induction
R to vary is depicted in Figures 63 and 64. The

Figure 62 duraluminum rotor had eight teeth. The self

varied with the frequency of approximately

1900 per/sec, which provided oscillations of
approximately 950 per/sec. Stationary mode of operation was produced using {
nonlinear self-induction either of iron cores of the coils of the stator, or }
of a coil with special iron core possessing an auxiliary winding for continu- |
ous current of magnetic induction. By icausing the intensity of the latter to
vary, it is possible to shift the operational point on the curve of magnetic
induction of the iron and modify coefficients 8 and y of formulae (35), (36).

By measuring the maximum damping occurring with initiation of oscilla- - /125
tions, we find that experience agrees very satisfactorily with formula (4), as:
shown by the table below. The experimental curves of "heteroparametric"

48 ' | |
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TABLE 1
m 8 2
I
| 0,144 0,23 10,146
H 0,35 0,57 {0,365
i 0,384 0,595 |0,375
Tr. Note: Commas indicate

decimal points.

resonance’clearly have the features indicated
below (Flgures 65 and 66). They rise or fall
according to whether the permanent mode Pf
operation occurs owing to induction coils them-
selves or to. a special coil magnetized b& a
continuous current. Figures 67 and 68 are
oscillograms of the stationary current. .
Figure 69 is an oscillogram of the transitory
mode of operation.

We used for the excitation of electric
oscillations by mechanical periodic variation of

capacitance a device whose circuit diagram is provided in Figure 70. The
oscillating circuit is formed from condenser C with capacitance varying
periodically, shunted from oil condenser C (serving to tune the circuit) and
from the self-induction coil L (several sections of the secondary of a

nonferrous inductor).

Condenser C (Figure 71) includes two systems of

armatures, one stationary (stator) and the other rotating (rotor). The stator
is made up of 26 square aluminum” plates, ea¢h one having 14 radial grooves

ranged symmetrically.

The rotor is an assembly of 25 circular aluminum plates

which are perforated in the same manner:as those of the stator and actuated by
a continuous current motor with a maximum rate of 4000 rpm. When the motor
performs at n revolutions per second, the capac1tance varies with the fre-
quency of 14 n per/sec.

Figure 63

i
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Figure 64
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7. vp==f(Cy); b =0,414; ip=40 mA
1. vy, = (Cy); Sy =0,47.
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Six neon tubes with
220 v in series and a
Hartmann-Braun statijc
voltmeter of 1200 v jallowed
observation of the presence
of oscillations and ithe
evaluation of their ‘intens-
ity. Neon tubes were used
at the same time to limit
the increase in oscilla-
tions.

Since the rotor
revolves at a fixed rate,
there is a range of values
of ¢ in which the voltmeter
fluctuates and the neon
) tubes light up. This range

vouiee corresponds to the fre-
Figure 71 quencies characteristic of
the circuit in the vicinity

of %u Controlling the

frequency of the oscillations by means of a tuningqurk, we were able to
ascertain that it is constant within the whole range'of excitation and equal
to 7 n (n being measured with the tachometer).

If the neon tubes are removed, it is possible to predict, the system

becoming linear, that the oscillations will increase until the installation is |

broken. This is what occurs in reality. The voltage, the neon tubes kept at
600-700 v, increases in their absence until a spark is produced between

the armatures of the condenser (2000-3000 v). The frequency with which the
spark occurs decreases proportionally as the frequency characteristic of the
circuit draws apart from the value 7 n. This observation is likewise
supported by theoretical considerations. According to the latter, the
increase of oscillations is slowed down proportionally as the boundaries of
the region of instability of the linear equation (29) is approached.

The modulation rate of the capacitance was, in these experiments, 0.175.

The experimental curves of Figure 72 provide the amplitude of the voltage

excited as a function of the unbalance and the damping of the circuit. When
the latter is increased, the range of parametric excitations is reduced. Its
measured width is well in agreement with that provided by theoretical con-
siderations.

In conclusion, let us add that H. Sekerska (Institute of Physics, Moscdw)
has provided the details of a new process allowing production of the Melde

| i ey
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[47] phenomenon, i.e. the parametric
- excitation of a vibrating string!. A variable
f o vou weight suspended by a metal wire allowsLtuning
' the normal modes of this latter on different

fe S ARUp -0 alternating current of 50 per/sec. The|
SR temperature is caused to vary periodicaily with

/%uél%mgﬁ?‘ the frequency of 100 and, consequently, the

Y fsup §002 voltage of the wire. When one of the normal

X modes of the wire is approximately tuned on
frequency 50, there is observed, provided that
the current intensity is sufficient, the para-
metric excitation of this mode.
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Forced Oscillations of a System with
Periodic Parameters. Parametric Coupling
Figure 72 ;
vl TR gt systemwith periodically varying
parameters is located within an unstable
region, the stationary state cannot be described, as we have seen in

section 7, by a linear equation. But if it is located in a stable region, the

stationary mode differs from equilibrium only owing to the effect of a
periodic or quasi-periodic external force. Since the oscillations are small
enough, the phenomenon can then be described by an!inhomogeneous linear

equation with periodic coefficients which, in the most simple case, is in the

form:
g+ 28¢ + p(1)g = (D) (38)

in which & is a coefficient of damping, p(t) a periodic function and f(t) a
periodic or quasi-periodic function. The phenomena expressed by equation
(38) depict a generalization of the well known phenomena of resonances
produced by the action of a periodic or quasi-periodic force f(t) on a linear
system with constant parameters (harmonic resonator). These phenomena of
generalized resonance were subjected by G. Gorelik? to a detailed theoretical
study based on some considerations of principle as provided by one from our
group [57].

The phenomena which have their source in harmonic resonators endow a
special physical importance to the sinysoidal functions and harmonic analysis

frequencies.  .The wire closes the circuit of an

T"The publication is in process. 5
2 The article in this issue of Techn. Phys. of the USSR.
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of an arbitrary function. It is the language of sinusoidal functions which is|

used by theory to cope with resonance phenomena in the systems with constant
parameters. However, this language ceases to be able to cope with systems
with periodically varying parameters. Function f(t) should satisfy certain
conditions in order for there to be resonance. These involve the 1aws of
selection, the shape of forced oscillations which are expressed for the
resonator with periodic parameters using new periodic or quasi- perlodﬂc

functions. These can be considered as a generalization of the sine and cosine |

functions, and are determined by the intrinsic properties of the resonator.
Resonance phenomena show in linear systems with periodic parameters a

character which changes depending on whether the resonator, in the absence of
external force and damping, i.e. the ideal system described by the equation

g+ p(Hyg="0

is in a stable region, at the boundary of an unstable region or in an jmstable .

region. In the first case, the forced oscillations of resonance are propor-
tional to %—just as in the case of the Harmonic resonator. In the second
case, there are two kinds of resonance: a "strong" resonance in which the
forced oscillations are proportional tO‘EZ-and ; "weak'" resonance in which

§ ,
they are proportional to %u If £(t) = E cos (wt +¢);, it is possible, by

causing the ¢ phase to vary, make a transition from the weak resonance. In
the third case, the resonance becomes more accentuated as the modulation rate

increases. If the force is sinusoidal, the nature of the phenomena is
likewise a function of its phase.

The theory of resonators with periodically varying parameters takes into
account certain phenomena which have some similarity with those occurring in

regenerative receivers. In the latter, the coupling between the grid circuits

and the plate ''regenerates' the circuit. It allows partial restoration, at
the "expense of the plate battery, of the energy dissipated in the forced
oscillations. The theory of 'regeneration" can be made, by disregarding the
nonlinear terms of the tube characteristic, using a linear equation with
constant coefficients. The regeneration decreases the coefficient of the
dissipating term. :

There is likewise produced a ''regeneration' effect. In other words, it
is possible to partially compensate, through utilization of a local source,
for the losses of energy in a circuit performlng forced oscillations, if one
of its parameters is caused to vary at a suitable frequency. The phenomenon
is especially advantageous if the frequency characteristic of the circuit,
that of the emf and that of the variation of the parameter are in the ratio of
1:1:2. The modulation rate plays a role similar to that of the coupling
coefficient in the regenerative receiver. One essential difference between
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the customary regeneration and this "parametric regeneration' means that the
latter is essentially more a function of -the phase than the emf with respect
to the variation of the parameter. Thev”parametrlc regeneration' effelct was
observed and studied at the Central Radio Laboratory by Divilkovski and
Rytov, as well as by Roubtchinskil '

The works of our laboratories have revealed new effects of parametric
coupling between oscillating systems. They differ essentially from the well
known phenomena which take place in linear coupled systems.

Let us take, for example, a mass suspended by a string with one fixed
point. This is the elastic pendulum studied by G. Gorelik and one of our
group [67] in relation to a question of optics?. When the mass oscillates
vertically, the length of the pendulum undergoes a periodic variation. If
the frequency of the elastic oscillations is double that of the angular
oscillations, there will be parametric excitation of the latter by the former.
(Whence the term ”parametric coupling,') This phenomenon has, with respect to
those phenomena discussed in section 7, this difference in that the variation
of the parameter itself is a function’ of theé ‘os¢illation which it excites. In |
reality, the angular oscillation causes the appearance of a centrifugal force
of frequency equal to that of elastic oscillations and consequently reacts on
the latter by ordinary resonance. The coupling is expressed, in the differ-

ential equations of the system, naturally autonomous, by nonlinear terms.
Parametric coupling can likewise be seen in self-exciting systems with two
degrees of freedom, for example that of Figure 51 in’ ‘which it was studied by
Tourbovitsch3. Since the operational point is selected in such a manner that
the polynomial expressing the characteristic of the tube has a term of the
second degree which is clearly marked, the equations of the system will be in
the form:

{

'3&-{_0)%{:2/33(5/,—[«.-. ‘
y o Aoty = fy* 4 - - |
(we only write the most significant terms) It can be seen that oscillation y

of the frequency circuit 2w, causes variation at this critical frequency of
"resistance" of the frequency circuit w (parametrlc action) and that, in

T The publications are in preparation.

2 This model allows providing a standard qualitative table of certain anom-
alies of combinative diffusion (Raman effect) with CO, molecules which Fermi
(Zeitschr. fuer Phys., No. 71, p. 250, 1931) treated by suitable methods of
quantitative mechanics. :

3 Publication is in preparation.




return, oscillation x generates a frequehcy force 2w which reacts by resonance
‘on oscillation y. T
H : '
A. Tscharakhtschian! studied the action of a sinusoidal force on &wo
circuits in parametric coupling:forming a 'payametric transformer." In this
system, the variation of the current in the primary circuit causes thejinduc-
tion coil of the secondary circuit to vary by modifying the magnetization of
the iron core coils. This allows production of phenomena of parametric
excitation.

9. Role of Statistics in Dynamic Systems

We shall conclude by a few words oﬁ some questions whose theoretical and
experimental study has just been begun by our laboratories? and which relate
the theory of oscillations to statistical theories.

- Even in the most simple case of the initiation of oscillations in a
triode emitter, there can clearly“be seen the role of statistics in the
behavior of a system [69], [70]. Even without a regular deviation, the
system, if at the initial instant, it is found in a state of equilibrium,

it will always draw apart owing to random pulses [71] (produced, for example,
by fluctuations). Now, the time during which the system arrives at a
stationary state is a function of the value of the initial perturbation (this,

of course, concerns.the time necessary for the state 'bf the system to arrive

at a difference from the stationary state by one given value). However, in
the triode emitter, the oscillating circuit levels the pulses to a "mean."
This is why their influence is always shown by the formation of small
oscillation of characteristic of a circuit whose amplitude is a function of
the spectral intensity of the pulses.

This leveling of the pulses will not have the time to be carried out if
the system is a very "migh-speed'" one. The instantaneous values of the
current and voltage will then be random. In systems such that a small vari-
ation of initial conditions inside the establishment of such and such
a final state, there will be observed directly the effect of various initial
conditions. This is the case, for example, of the tip relays which have a
saddle (at the origin of the coordinates) and two stable nodes, one on the
right and the other on the left of the 'saddle. It is possible, for example,

to produce a relay having two stable nodes located, on the phase plane, to the

right and to the left of a saddle 0, and symmetrical with respect to the
latter. Let us assume that when the relay is triggered, the figurative point
is located at 0. It is clear that if the initial conditions are divided
according to the laws of chance, the deviations to the right and to the left
will be likewise probable and if, consequently, the system is triggered

/131
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TThe publication is in preparation. .
2 The experiments are still in progress.
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without applying the pulse from outside, it will travel either toward the
right node or toward the left node, accordlng to. a statistical law. This
statistical law will be modified if regular pulses are used. By comparing
the effect of regular pulses with those of random pulses, it is possible to
evaluate the value of the latter.. Experiments of this kind were performed in
one of our laboratories. The ampllfled fluctuations of the current ofia
vacuum tube were used as a source of random pulses. The value of the fluctu-
ations determined in this way agrees satisfactorily with the well known
“theoretical and expérimental findings of Schottky.

It is possible to raise another question concerning the transition of a
'system fromone state to the other owing to the effect of random pulses. This
problem washandled theoretically using the Fokker equation. In particular,

L. Pontriaguine calculated the mathematical expectancy of the duration of
transition from one state to the other. Using results obtained, it is possible
to compute the duration of transition from one stationary state to another,
thus allowing discussion of mean duration of stay in such and such a station-
ary state. This is naturally a function of the value of the random pulses.

We were able to experimentally ascértain’ “the''éxistence of these 'spontaneous'
transitions from one stationary state to the other.

Observing the duration of stay in such and such a stationary state, it is
ppossible to determine by using some plausible supplementary postulates, the
value of random pulses. Note that the existence of random pulses limits in
principle the precision with which it is p0551bLe té'dttribute to an
oscillatory phenomenon a determined perlod

Conclusion of the Oscillations

We desired to provide a short overview of some works carried out during
the last few years in the laboratory of the Institute of Physics of the
University of Moscow, the Central Radio Laboratory (Leningrad), the Laboratory
of Nonlinear Oscillations of the Institute of Electrophysics (Leningrad) and
the University of Gorki. In order not to overload our report, we omitted a
whole series of questions relating, for: ‘example, to systems with several
degrees of freedom!. And in the ones which we have discussed, we have had to
confine ourselves to the most essential topics, in this way sacr1f1c1ng a
great number of often interesting details. We have provided references below,
Soon a certain number of works so far only published in Russian will likewise
gppear in other languages.

1"The theory of the two coupled emltters was discussed by Mayer. The one for
the oscillations forced into the self-exciting systems with two degrees of
freedom gave rise to the works of Rytov, Bernstein and Ikonnikov and Mayer.
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